University of Leeds and Kyoto University Int. Symposium

Advanced Engineering for Natural Disaster Identification, Mitigation, Prevention and Response

Group 4 : Robotics

"Applied Swarm Robotics"

Members

- University of Leeds Jordan Boyle (Mechanical Eng.) Abbas Dehghani (Mechanical Eng.) Mehmet Dogar (Computing) Jongrae Kim (Mechanical Eng.) Robert Richardson (Mechanical Eng.) Shane Xie (Electronic and Electrical Eng.)
- Kyoto University

Fumitoshi Matsuno (Mechanical Eng.)

Robotics: Future Enabling Technology

We are facing the challenge of

Private environments

 maintaining and enhancing Personal assistance for physical and psychological welfare

Economic environments

- Affordable economic and social welfare
- Ageing of population (at home, at work, in the society...)

Physical environments

- Conserving and monitoring the planet
- Natural and man-made disasters

Urban environments

- Growing urban centers
- Maintaining the quality of life at urban scale

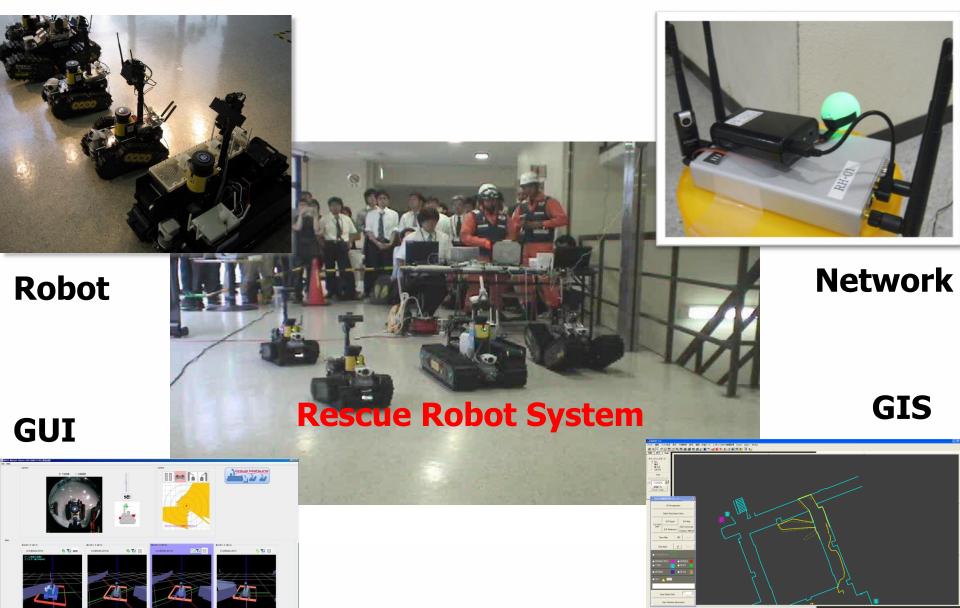
AI/HI and Robot/Human

- 2030 AI=HI
- 2050 AI>HI Singularity
- ????? Robot > Human ?

- Robot helps human
- Robot works instead of human
- Robot accomplishes tasks that human can not do

2 Facts

- Necessity of Robot Technology
 - Disaster and rescue
 - Aging society
 - Health care

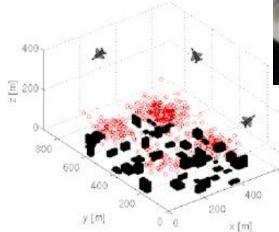

. . .

UK and Japan are the leading nations in robotics

Robotics in UL and UK

- UL and UK partners are in particular strong in
 - Rescue robot systems
 - Physical Human-Robot Collaboration
 - Bio-inspired robotics
 - Optimization and Control
 - Swarm robotics
 - Humanoid robotics
 - Cognitive Science
 - Neuroscience

Robotics@Kyoto University



BH925, 30811/6 30

Robotics@Leeds

Bio-inspired

Rehab / Medical

Optimization & control

600

Self-repairing cities

Physical h-r collaboration

Next actions

- Organizing workshops in international conferences
 SWARM2019, DARS2020, SWARM2020, ...
- Writing a survey paper / organizing a special issue. Tentative title: "Barriers to and opportunities for real-world swarm robotic deployments" Focus on applications
- Preparation of UK-Japanese joint proposal for research project in the field of human centered robotics
 - Rescue robot system
 - Human robot interaction
 - Service Robot
 - ..
- Funding through JST or JSPS in Japan and the RCUK in UK.
- Desired: Support for preparation of the joint proposal through the Universities
- Essential: Funding to attend SWARM2019 in Japan.
 - Prof. Matsuno is in the Organising Committee.

Discussed ideas

- Are there any real world successful deployments of swarms?
 - Very few
 - One case where they were used to clean an oil slick
 - Arguably Amazon warehouse robots
 - Arguably the recent UAV light show (art)
- What would it take to get more swarms deployed in real life?
- How should we define swarm robotics?
 - How many individuals required?>10?>100?>1000?
 - Or is the key point decentralized control giving cooperative behaviour.
- Swarm challenges:
 - Energy limitations / acquisition
 - Locomotion mechanism
- Arguably an aquatic swarm robot is easiest, because its a good balance of energy efficiency and lack of obstacles
 - Consider sea gliders or sailing boats
 - Flying is energy inefficient but doesn't need to worry about obstacles
 - Ground robots have the biggest issue with obstacles
- Semi-autonomous / semi-decentralized
- swarms / rescue robots
- Self Assembly

Harvard University